HEAT AND MASS TRANSFER IN A TURBULENT REACTING FLOW
IN AN ANNULAR CHANNEL (INTERNAL HEAT CONDUCTOR).
PART 1. STABILIZED HEAT-TRANSFER SEGMENT

L. V. Mishina, B. E. Tverkovkin, UDC 536.24
and L. N. Shegidevich

Theoretical formulas are derived for the heat and mass transfer characteristics in
a turbulent chemically nonequilibrium flow. The functions needed to derive the
mean-mass values for the relative temperature and composition have been calculated
throughout the range in the flow parameters, namely from quasifrozen to quasiequil: b~
rium, and the same applies to the Nusselt number at the inner surface and the rela-
tive adiabatic temperature on the stabilized heat-transfer part. Fitted expressiors
are derived for those functions, which give the major characteristics with errors
of < 37.

We consider a hydrodynamically stabilized‘chemically nonequilibrium flow in a chainel
formed by coaxial cylinders having inert impermeable surfaces and constant specific heat
fluxes there (qo, = const and gqg, = 0).

The reversible dissociation of nitrogen dioxide occurs homogeneously in the flow. The
[1] analysis implies that the resulting gas mixture can be represented as of quasibinary type
2A 2 3B.

The inlet is a flow having a uniform temperature profile T, and a chemically equilib-
rium composition x, = %g(T,).

The boundary-layer approximation for the heat and mass transfer give
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Some simplifying assumptions have been made in writing (1): the properties of the flow
are constant, the Lewis number Leg = 1, and the ratios of the molecular and turbulent Schmidth
and Prandtl numbers are Scg/Sct = Prg/Pry. The mass source is represented as a Taylor-se-
ries expansion in the deviations in the composition from the local equilibrium value and is
linearized:

Iy = ndeF (;
(2)

- . ___l_ ay
F(x) = a,(x, x){l 5

(o — 9+ — 22 (x, 02| = ay (5, — ),
ay 6 J

Nuclear Power Institute, Belorussian Academy of Sciences, Minsk. Translated from In-
zhenerno-Fizicheskii Zhurnal, Vol. 59, No. 5, pp. 729-736, May, 1990. Original article sub-
mitted March 17, 1989.

0022-0841/90/5805-0555$12.50 © 1990 Plenum Publishing Corporation 555



in which
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The possible errors due to mass source linearization have been discussed in detail in [1, 2];
the following transformation is made:
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We introduce the auxiliary functions
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For V(R, n) we get
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Equation (5) corresponds to the temperature distribution in turbulent flow in an annular chan-
nel having q¢, = const, g¢, =0 for a chemically inert coolant. The solution to (5) is written
as

V(R, W) =0+ Y*=6;(R, m). (6)
The equation for W(R, n) is
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in which y2 = g2(1 + %) is the thermal chemical nonequilibrium parameter. If y? = 0 (chemi-
cally inert flow), ¥¥ =0, Wy=x0=x0;. We introduce

W
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Then (7) is rewritten as
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We perform an integral transformation with respect to the radial coordinte [3]:
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We use (10) to rewrite (9):
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The new coordinate from (10) enables one to extend the wall region and thus to use a larger
step in the numerical solution for large Re [3].

Gretz's method is used with (11). We represent the solution as
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i.e., Pu(£) is the solution on the stabilized heat-transfer part (nominally n + «), while
P, (&, n) is the solution on the initial thermal segment.

For the stabilized heat-transfer segment,
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The pivot method was applied to the boundary-value problem of II type in (14). Values
were tabulated for Pw(0) = Py(E = 0), Pu(l) = Pu(f = 1) and Ps, with the mean mass values
determined from

(14)
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Integrating (14) gives
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which has been used to analyze the errors in the numerical solution along with
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We introduce the fitting functions
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Then the theoretical expressions for the transfer characteristics in the stabilized heat-
transfer part are
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It follows from (18) that the characteristics can be calculated for this turbulent re-
acting flow in an annular channel from data on the heat transfer in a chemically inert
(frozen) flow.

The heat-transfer equation for a turbulent flow of inert coolant in an annular channel
is as follows subject to the usual simplifying assumptions [4] for analytic solution
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We represent the solution for the heat transfer in an inert flow as a sum of solutions
for the stabilized heat-transfer part and the initial thermal segment:

Pf(gs n)zpf“+Pf0" (23)

For the stabilized heat-transfer segment

Piw(® M) = Pu()+ Pr@® (24)
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in which
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We substitute (23)-(25) into (22) to get a boundary-value problem of the second kind for the
stabilized heat-transfer part:
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We use (21) and (24)-(29) to derive expressions for the transfer characteristics on such
turbulent flow of an inert material:
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To calculate the (17) functions and the (18) characteristics, we use a velocity profile
derived from the equation of motion [5]
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in which i = 1 corresponds to the inner region of the flow (R;<CR=Rus) and i = 2 to the outer
(Rn<CR=<CR;). The hydraulic resistance coefficient was taken [6]) as Efr = [1.82 1lg Re-
1.64-0.19k%-25]-2,

The maximum-~velocity coordinate was derived from the formula [7] with a revised powver

[6]:

Ry, = ktk , n=0,3+0,0431g (Re-107%). (32)

(1—k&) (1 4-£7)
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A modified Reichardt formula for a circular tube with variable parameters was used to
derive the turbulent viscosity, which involves the geometry and the hydrodynamics in the an-
nular channel [6]:
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A discontinuity occurs on the Ry line when (33) is used. To obtain a continuous func-
tion v¢/v throughout the cross section, we use the following link-up methods:
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The resulting values for the continuous function of \)t/v agree with measurements [8] with a
maximum error of 8-11% for the inner region (i = 1) and 4-67% for the outer (i = 2) throughout
the range examined in [8]: Re = 4.10%-1.8-10°%, k = 0.28-0.75.

One can compare these results from (30)-(34) with Prg = 0.7 abd Pry = 0.8 with the ob-
served and calculated values from various sources [7, 9-12]; this implies that [0NUjieo|max<<7%
and (608, Imax<<11% for £k=0,1—0,8, Re=2-10*—105, When the fitted functions are calculated
for the characteristics in a turbulent reacting flow from (17), we use approximations [9, 12]
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The (17) functions are dependent on Prg/Pry, k, Re, y. With fixed values Prg/Pr¢ =
0.7/0.8, Re = 10%-10%, k = 0.1-0.9, we tabulated values of @, Dw(0), Dx(l), Se, Szgw as func-
tions of y in the range 0 to 5 x 10%® (from the chemically frozen state to the equilibrium
one). The fitted functions varied from 1 (frozen) to 0 local thermochemical equilibrium).
For convenience in using the results, the tabulated values for k = 0.3-0.9, Re = 10*-10°,

y = 5-5-10% were fitted to
=  l—exp[—vn(l+ 0,22—1H] = 70
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which Z=Re/l10% X=(ao+a;k+a:k?)yPRem; n=1,109+4,238.10-2 Z—3,847. 10~* Z2; m=—0,7263+9,959-10-3
7—8,429.105 72, p=0,8040—2,842- 10-2 Z+2495.10~* 7% ap=T4,17+7,632 Z—6,374.10-2 Z% a,=68,95—

0,5922 Z+45-10-% 22, a,=-—39,10--0,5099 Z—5,276-10~3 Z2; y =yRe 0#%[1+0,082 Z]; b=4,809+5,371
exp (4,048 y).
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The fitting erros for (35)-(37) lead to the following error levels in determinirg the
characteristics from (18): |80w|max<<3%, [6NUw|max<3%, |8Oadw|max<x4%.

Then (18) together with (35)-(37) give the heat and mass transfer coefficients with ac-
ceptable errors.

NOTTION

R=r/A; n=42/deRePr dimensionless coordinates, (deg=-2)\, A= r,—r; Re = Udg/v; Pry=vjas; c§= AfpCps;
Geid
A

G A ‘ . . . .
0= (T—T, / —a— dimensionless temperature; Y*::u~—xw)a’/< ) dimensionless NO con-

centration; NO; «’ :AhhiK@f12§(2——xa; AHmpi=2H3 + H, —2H,increment in molecular enthalpy o1 ac-
count of reaction 2NO,222NO+ Oy x =o' (xe—x)/(T —T0) gas reactivity; B?=1./tc Damkelle: number;
T4=A%Dy characteristic diffusion time; 15'=nKq(2—xJa1 chemical relaxation time; n = P/RT
molar density; Kg nitrogen dioxide dissociation rate constant; x -molar fraction .of NO;
y2=p2(1+%) chemical disequilibrium thermal parameter; f(R) =U,(R)/U velocity profile; g(R) =

vt Pry R 1 vT P e124A
A D k= : — -p P —: 8 = (T (1) — -yt : -
rire; Ry % Re=T_,788 14 ; ad,, = (T (1) Tm)/( y ),yl dynamic coor
Z

v  Prr

2 - R, . -
dinate; V; dynamic velocity; (Vf/Vﬂ2==rﬂr._<-E————R>(-IV“l, T=p E;D U2 3 g, =45 (R=Rm); (T V)Reich
calculation from (33); yf =4} (R = Remw) linkage coordinate in outer region; Ryy linkage ra-
Som) .
1
—_— — dR, G = — dR; P(0) = P(E=0), P(I)= P (E=1); subscripts:
- b( Vg O( 75 4R PO = ( p

dius; & integral coordinate, &=

= stabilized heat-transfer segment; f and e frozen and equilibrium states; M molar .quantity;
m coordinate for maximum velocity; and ap approximation error.
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